Title of article :
Nonclassical symmetry analysis for hyperbolic partial differential equation
Author/Authors :
Murata، نويسنده , , Souichi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
3
From page :
1472
To page :
1474
Abstract :
We consider the nonclassical symmetry of one-dimensional hyperbolic differential equations of the form ut + M(u)ux = 0. For the infinitesimal generator V = τ ∂ t + ξ ∂ x + ∑ i = 1 n ϕ i ∂ u i , it is shown that ξ is an eigenvalue of the matrix M when ϕi = 0 [Souichi M. Nonclassical symmetry and Riemann invariants. Int J Nonlinear Mech, [in press]]. In this paper, we prove a sufficient condition of a lemma.
Keywords :
Nonclassical symmetry , Riemann invariants
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2008
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1533759
Link To Document :
بازگشت