Title of article :
Itô and Stratonovich integrals on compound renewal processes: the normal/Poisson case
Author/Authors :
Germano، نويسنده , , Guido and Politi، نويسنده , , Mauro and Scalas، نويسنده , , Enrico and Schilling، نويسنده , , René L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
1583
To page :
1588
Abstract :
Continuous-time random walks, or compound renewal processes, are pure-jump stochastic processes with several applications in insurance, finance, economics and physics. Based on heuristic considerations, a definition is given for stochastic integrals driven by continuous-time random walks, which includes the Itô and Stratonovich cases. It is then shown how the definition can be used to compute these two stochastic integrals by means of Monte Carlo simulations. Our example is based on the normal compound Poisson process, which in the diffusive limit converges to the Wiener process.
Keywords :
Continuous-time random walk , Stochastic integrals , Stochastic jump process , Probabilistic model , Probabilistic simulation , Stochastic model , Econophysics , Monte Carlo , Stochastic theory
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2010
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1535080
Link To Document :
بازگشت