Title of article :
Intercellular Adhesion and Cancer Invasion: A Discrete Simulation Using the Extended Potts Model
Author/Authors :
TURNER، نويسنده , , STEPHEN and SHERRATT، نويسنده , , JONATHAN A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
16
From page :
85
To page :
100
Abstract :
We develop a discrete model of malignant invasion using a thermodynamic argument. An extension of the Potts model is used to simulate a population of malignant cells experiencing interactions due to both homotypic and heterotypic adhesion while also secreting proteolytic enzymes and experiencing a haptotactic gradient. In this way we investigate the influence of changes in cell–cell adhesion on the invasion process. We demonstrate that the morphology of the invading front is influenced by changes in the adhesiveness parameters, and detail how the invasiveness of the tumour is related to adhesion. We show that cell–cell adhesion has less of an influence on invasion compared with cell–medium adhesion, and that increases in both proteolytic enzyme secretion rate and the coefficient of haptotaxis act in synergy to promote invasion. We extend the simulation by including proliferation, and, following experimental evidence, develop an algorithm for cell division in which the mitotic rate is explicitly related to changes in the relative magnitudes of homotypic and heterotypic adhesiveness. We show that although an increased proliferation rate usually results in an increased depth of invasion into the extracellular matrix, it does not invariably do so, and may, indeed, cause invasiveness to be reduced.
Journal title :
Journal of Theoretical Biology
Serial Year :
2002
Journal title :
Journal of Theoretical Biology
Record number :
1535267
Link To Document :
بازگشت