Title of article :
A new class of smoothing complementarity functions over symmetric cones
Author/Authors :
Li، نويسنده , , Yuan Min and Wang، نويسنده , , Xing Tao and Wei، نويسنده , , De Yun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
3299
To page :
3305
Abstract :
A popular approach to solving the complementarity problem is to reformulate it as an equivalent system of smooth equations via a smoothing complementarity function. In this paper, first we propose a new class of smoothing complementarity functions, which contains the natural residual smoothing function and the Fischer–Burmeister smoothing function for symmetric cone complementarity problems. Then we give some unified formulae of the Fréchet derivatives associated with Jordan product. Finally, the derivative of the new proposed class of smoothing complementarity functions is deduced over symmetric cones.
Keywords :
Complementarity problem , Fréchet derivative , Symmetric cone , Complementarity functions
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2010
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1535407
Link To Document :
بازگشت