Title of article :
Maximum geometrical hindrance to diffusion in brain extracellular space surrounding uniformly spaced convex cells
Author/Authors :
Tao، نويسنده , , L and Nicholson، نويسنده , , C، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Brain extracellular space (ECS) constitutes a porous medium in which diffusion is subject to hindrance, described by tortuosity, λ=(D/D*)1/2, where D is the free diffusion coefficient and D* is the effective diffusion coefficient in brain. Experiments show that λ is typically 1.6 in normal brain tissue although variations occur in specialized brain regions. In contrast, different theoretical models of cellular assemblies give ambiguous results: they either predict λ-values similar to experimental data or indicate values of about 1.2. Here we constructed three different ECS geometries involving tens of thousands of cells and performed Monte Carlo simulation of 3-D diffusion. We conclude that the geometrical hindrance in the ECS surrounding uniformly spaced convex cells is independent of the cell shape and only depends on the volume fraction α (the ratio of the ECS volume to the whole tissue volume). This dependence can be described by the relation λ=((3−α)/2)1/2, indicating that the geometrical hindrance in such ECS cannot account for λ>1.225. Reasons for the discrepancy between the theoretical and experimental tortuosity values are discussed.
Keywords :
diffusion , Extracellular space , Monte Carlo simulation , volume fraction , Tortuosity , Geometrical hindrance
Journal title :
Journal of Theoretical Biology
Journal title :
Journal of Theoretical Biology