Title of article :
Gauge transformation, elastic and inelastic interactions for the Whitham–Broer–Kaup shallow-water model
Author/Authors :
Wang، نويسنده , , Lei and Gao، نويسنده , , Yi-Tian and Gai، نويسنده , , Xiao-Ling، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
12
From page :
2833
To page :
2844
Abstract :
Whitham–Broer–Kaup (WBK) model is a model for the dispersive long wave in shallow water. With symbolic computation, gauge transformation between the WBK model and a parameter Ablowitz–Kaup–Newell–Segur (AKNS) system is hereby constructed. By selecting seeds, we derive two sorts of multi-soliton solutions for the WBK model via a N-fold Darboux transformation (DT) of the parameter AKNS system, which are expressed in terms of the Vandermonde-like and double Wronskian determinants, respectively. Different from the bilinear way, the double Wronskian solutions can be obtained via the N-fold DT with a linear algebraic system and matrix differential equation solved. A novel inelastic interaction is graphically discussed, in which the soliton complexes are formed after the collision. Our results could be helpful for interpreting certain shallow-water-wave phenomena.
Keywords :
Whitham–Broer–Kaup model , Elastic/inelastic interactions , Gauge transformation , Darboux transformation , Vandermonde-like determinant , Double Wronskian determinant , Symbolic computation
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2012
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1537093
Link To Document :
بازگشت