Title of article :
Jacobi zeta function and action-angle coordinates for the pendulum
Author/Authors :
Brizard، نويسنده , , Alain J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The Jacobi elliptic functions and integrals play a defining role in analytically describing the motion of the planar pendulum. In the present paper, the Jacobi zeta function is given the physical interpretation as the generating function of the canonical transformation from the pendulum coordinates ϑ and p ≡ ∂ ϑ / ∂ t to the action-angle coordinates ( J , ζ ) for both the librating pendulum and the rotating pendulum.
Keywords :
Planar pendulum , Action-angle coordinates , Jacobi elliptic functions , Generating function for canonical transformation
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Journal title :
Communications in Nonlinear Science and Numerical Simulation