Title of article :
Periodic solutions of quadratic Weyl fractional integral equations
Author/Authors :
Chen، نويسنده , , Qian and Wang، نويسنده , , JinRong and Chen، نويسنده , , Fulai and Zhang، نويسنده , , Yuruo Shi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
11
From page :
1945
To page :
1955
Abstract :
In this paper, we study periodic solutions of quadratic Weyl fractional integral equations. We derive the convergence, periodicity, continuity and boundedness of Weyl kernel. With the help of these basic properties, we prove the existence of 2 π -periodic solutions of the desired equation by using a technique of measure of noncompactness via Schauder fixed point theorem. Moreover, we obtain uniform local attractivity of the 2 π -periodic solutions. Finally, an example is given to illustrate the obtained results.
Keywords :
existence , Uniform local attractivity , Quadratic Weyl fractional integral equations , 2 ? -periodic solutions
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Serial Year :
2014
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Record number :
1538529
Link To Document :
بازگشت