Title of article :
The bi-atomic uniform minimal solution of Schmitterʹs problem
Author/Authors :
Karl and De Vylder، نويسنده , , F. and Goovaerts، نويسنده , , M. L. Marceau، نويسنده , , E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
20
From page :
59
To page :
78
Abstract :
The problem posed by Schmitter was to maximize the ruin probability when mean and variance of the claim size distribution are given. In this note we prove that the minimal ruin probability is given by the bi-atomic distribution with the maximal possible claim size as one of its mass points. A by-product is a lower bound c e−pu for the ruin probability ψ(u), where p is the adjustment coefficient, and c a constant not depending on the allowed claim size distributions.
Keywords :
convolution , Extremal problem , Classical risk model , Concave function , Asymptotic value , Schmitterיs problem , Renewal equation
Journal title :
Insurance Mathematics and Economics
Serial Year :
1997
Journal title :
Insurance Mathematics and Economics
Record number :
1541582
Link To Document :
بازگشت