Title of article :
Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness
Author/Authors :
Embrechts، نويسنده , , Paul and Ne?lehov?، نويسنده , , Johanna and Wüthrich، نويسنده , , Mario V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
6
From page :
164
To page :
169
Abstract :
Mainly due to new capital adequacy standards for banking and insurance, an increased interest exists in the aggregation properties of risk measures like Value-at-Risk (VaR). We show how VaR can change from sub to superadditivity depending on the properties of the underlying model. Mainly, the switch from a finite to an infinite mean model gives a completely different asymptotic behaviour. Our main result proves a conjecture made in Barbe et al. [Barbe, P., Fougères, A.L., Genest, C., 2006. On the tail behavior of sums of dependent risks. ASTIN Bull. 36(2), 361–374].
Keywords :
Aggregation , Subadditivity , Archimedean copula , Dependence structure , Value-at-Risk
Journal title :
Insurance Mathematics and Economics
Serial Year :
2009
Journal title :
Insurance Mathematics and Economics
Record number :
1543710
Link To Document :
بازگشت