Title of article :
Auxiliary model based least squares parameter estimation algorithm for feedback nonlinear systems using the hierarchical identification principle
Author/Authors :
Hu، نويسنده , , Peipei and Ding، نويسنده , , Feng and Sheng، نويسنده , , Jie، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
This paper presents a decomposition based least squares estimation algorithm for a feedback nonlinear system with an output error model for the open-loop part by using the auxiliary model identification idea and the hierarchical identification principle and by decomposing a system into two subsystems. Compared with the auxiliary model based recursive least squares algorithm, the proposed algorithm has a smaller computational burden. The simulation results indicate that the proposed algorithm can estimate the parameters of feedback nonlinear systems effectively.
Journal title :
Journal of the Franklin Institute
Journal title :
Journal of the Franklin Institute