Title of article :
An augmented Lagrangian algorithm for total bounded variation regularization based image deblurring
Author/Authors :
Xu، نويسنده , , Yi and Huang، نويسنده , , Ting-Zhu and Liu، نويسنده , , Jun and Lv، نويسنده , , Xiao-Guang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
15
From page :
3053
To page :
3067
Abstract :
The augmented Lagrangian strategy has recently emerged as an important methodology for image processing problems. In this paper, based on this strategy, we propose a new projected gradient algorithm for image deblurring with total bounded variation regularization. The convergence property of our algorithm is discussed. Numerical experiments show that the proposed algorithm can yield better visual quality than the Rudin–Osher–Fatemi (ROF) method and the split Bregman iteration method.
Journal title :
Journal of the Franklin Institute
Serial Year :
2014
Journal title :
Journal of the Franklin Institute
Record number :
1545104
Link To Document :
بازگشت