Title of article :
An intersection theory count of the SL2(C)-representations of the fundamental group of a 3-manifold
Author/Authors :
Curtis، نويسنده , , Cynthia L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
15
From page :
773
To page :
787
Abstract :
We define an invariant of closed 3-manifolds counting the signed equivalence classes of representations of the fundamental group in SL2(C). The invariant is an SL2(C)-analog of the Casson-Walker invariant for SU(2). We reinterpret the invariant algebro-geometrically and show that it is non-negative. We relate the invariant to a generalization of the norm of Culler, Gordon, Luecke and Shalen. We show that an analog of the Casson-Walker knot invariant exists in this setting. We obtain a Dehn surgery formula for the invariant for manifolds which are the result of Dehn surgery on knots in integral homology spheres, where the surgery coefficients obey certain technical conditions.
Keywords :
3-Manifolds , Casson invariants , Representation spaces
Journal title :
Topology
Serial Year :
2001
Journal title :
Topology
Record number :
1545275
Link To Document :
بازگشت