Title of article :
Torus equivariant harmonic maps between spheres
Author/Authors :
Gastel، نويسنده , , Andreas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
15
From page :
213
To page :
227
Abstract :
By minimizing in Sobolev spaces of mappings which are equivariant with respect to certain torus actions, we construct homotopically nontrivial harmonic maps between spheres. Doing so, we can represent the nontrivial elements of πn+1(Sn) (n⩾3) and of πn+2(Sn) (n⩾5 odd) by harmonic maps, as well as infinitely many elements of πn(Sn) (n∈N). The existence proof involves equivariant regularity theory.
Keywords :
Harmonic maps , Homotopy groups of spheres , Equivariant
Journal title :
Topology
Serial Year :
2002
Journal title :
Topology
Record number :
1545309
Link To Document :
بازگشت