Title of article :
Projecting (N−1)-cycles to zero on hyperplanes in RN+1
Author/Authors :
Solomon، نويسنده , , Bruce، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
11
From page :
233
To page :
243
Abstract :
The projection of a compact oriented submanifold Mn−1⊂Rn+1 on a hyperplane Pn can fail to bound any region in P. We call this “projecting to zero.” Example: The equatorial S1⊂S2⊂R3 projects to zero in any plane containing the x3-axis. Using currents to make this precise, we show a lipschitz (homology) (n−1)-sphere embedded in a compact, strictly convex hypersurface cannot project to zero on n+1 linearly independent hyperplanes in Rn+1. We also show, using examples, that all the hypotheses in this statement are sharp.
Keywords :
Projections , Cycles , Winding number , Ovaloids , Currents
Journal title :
Topology
Serial Year :
2004
Journal title :
Topology
Record number :
1545422
Link To Document :
بازگشت