Title of article :
Torus and Z/p actions on manifolds
Author/Authors :
Sikora، نويسنده , , Adam S، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Let G be either a finite cyclic group of prime order or S1. We show that if G acts on a manifold or, more generally, on a Poincaré duality space M, then each term of the Leray spectral sequence of the map M×GEG→BG satisfies a properly defined “Poincaré duality”. As a consequence of this fact we obtain new results relating the cohomology groups of M and MG. We apply our results to study group actions on 3-manifolds.
Keywords :
Poincaré duality , Leray–Serre spectral sequence , Leray spectral sequence , Equivariant cohomology , Torus action , Cyclic group action