Title of article :
Homology at infinity; fractal geometry of limiting symbols for modular subgroups
Author/Authors :
Kessebِhmer، نويسنده , , M. and Stratmann، نويسنده , , B.O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
In this paper we use fractal geometry to investigate boundary aspects of the first homology group for finite coverings of the modular surface. We obtain a complete description of algebraically invisible parts of this homology group. More precisely, we first show that for any modular subgroup the geodesic forward dynamic on the associated surface admits a canonical symbolic representation by a finitely irreducible shift space. We then use this representation to derive a complete multifractal description of the higher-dimensional level sets arising from the Manin–Marcolli limiting modular symbols.
Keywords :
Lyapunov spectra , Limiting modular symbols , Modular subgroups , Non-commutative tori , Thermodynamical formalism , multifractal formalism