Title of article :
High order geometric methods with exact conservation properties
Author/Authors :
Hiemstra، نويسنده , , R.R. and Toshniwal، نويسنده , , D. and Huijsmans، نويسنده , , R.H.M. and Gerritsma، نويسنده , , M.I.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
28
From page :
1444
To page :
1471
Abstract :
Conservation laws in, for example, electromagnetism, solid and fluid mechanics, allow an exact discrete representation in terms of line, surface and volume integrals. In this paper, we develop high order interpolants, from any basis that constitutes a partition of unity, which satisfy these integral relations exactly. The resulting gradient, curl and divergence conforming spaces have the property that the conservation laws become completely independent of the basis functions. Hence, they are exactly satisfied at the coarsest level of discretization and on arbitrarily curved meshes. As an illustration we apply our approach to B-splines and compute a 2D Stokes flow inside a lid driven cavity, which displays, amongst others, a point-wise divergence-free velocity field.
Keywords :
Compatible discretization , High order methods , Conservation principles , B-splines , Stokes flow
Journal title :
Journal of Computational Physics
Serial Year :
2014
Journal title :
Journal of Computational Physics
Record number :
1545598
Link To Document :
بازگشت