Title of article :
Boundary treatment for fourth-order staggered mesh discretizations of the incompressible Navier–Stokes equations
Author/Authors :
Huib R Sanderse، نويسنده , , B. and Verstappen، نويسنده , , R.W.C.P. and Koren، نويسنده , , B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
34
From page :
1472
To page :
1505
Abstract :
Harlow and Welch [Phys. Fluids 8 (1965) 2182–2189] introduced a discretization method for the incompressible Navier–Stokes equations conserving the secondary quantities kinetic energy and vorticity, besides the primary quantities mass and momentum. This method was extended to fourth order accuracy by several researchers [25,14,21]. In this paper we propose a new consistent boundary treatment for this method, which is such that continuous integration-by-parts identities (including boundary contributions) are mimicked in a discrete sense. In this way kinetic energy is exactly conserved even in case of non-zero tangential boundary conditions. We show that requiring energy conservation at the boundary conflicts with order of accuracy conditions, and that the global accuracy of the fourth order method is limited to second order in the presence of boundaries. We indicate how non-uniform grids can be employed to obtain full fourth order accuracy.
Keywords :
Incompressible Navier–Stokes equations , Symmetry preservation , Boundary conditions , Energy conservation , Fourth order accuracy
Journal title :
Journal of Computational Physics
Serial Year :
2014
Journal title :
Journal of Computational Physics
Record number :
1545600
Link To Document :
بازگشت