Title of article :
Averaged Dehn functions for nilpotent groups
Author/Authors :
Young، نويسنده , , Robert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Gromov proposed an averaged version of the Dehn function and claimed that in many cases it should be subasymptotic to the Dehn function. Using results on random walks in nilpotent groups, we confirm this claim for most nilpotent groups. In particular, if a nilpotent group satisfies the isoperimetric inequality δ ( l ) < C l α for α > 2 , then it satisfies the averaged isoperimetric inequality δ avg ( l ) < C ′ l α / 2 . In the case of non-abelian free nilpotent groups, the bounds we give are asymptotically sharp.
Keywords :
Dehn functions , Random walks , nilpotent groups