Title of article :
A Smooth Variational Principle with Applications to Hamilton-Jacobi Equations in Infinite Dimensions
Author/Authors :
Deville، نويسنده , , R. and Godefroy، نويسنده , , G. and Zizler، نويسنده , , V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1993
Pages :
16
From page :
197
To page :
212
Abstract :
We prove that if X is a Banach space which admits a smooth Lipschitzian bump function, then for every lower semicontinuous bounded below function ƒ, there exists a Lipschitzian smooth function g on X such that f + g attains its strong minimum on X, thus extending a result of Borwein and Preiss. We then show how the above result can be used to obtain existence and uniqueness results of viscosity solutions of Hamilton-Jacobi equations in infinite dimensional Banach spaces a without assuming the Radon Nikodym property.
Journal title :
Journal of Functional Analysis
Serial Year :
1993
Journal title :
Journal of Functional Analysis
Record number :
1545659
Link To Document :
بازگشت