Title of article :
Maximal partial spreads of T2(O) and T3(O)
Author/Authors :
Brown، نويسنده , , M.R. and De Beule، نويسنده , , J. and Storme، نويسنده , , L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
12
From page :
73
To page :
84
Abstract :
Assuming a partial spread of T2(O) or T3(O), with deficiency δ, is maximal and using results on minihypers, which are closely related to blocking sets in PG(2,q), we obtain lower bounds for δ. If q is even, using extendability of arcs in PG(2,q), we prove that a maximal partial spread of T2(O) which does not cover (∞) does not exist if δ≤q−1. This improves a theorem of Tallini (Proceedings of the First International Conference on Blocking Sets (Giessen, 1989) 201 (1991) 141) for T2(O)≅Q(4,q), and, furthermore, this result is sharp since partial spreads with deficiency δ=q are constructed.
Journal title :
European Journal of Combinatorics
Serial Year :
2003
Journal title :
European Journal of Combinatorics
Record number :
1545831
Link To Document :
بازگشت