Title of article :
Knight move in chromatic cohomology
Author/Authors :
Chmutov، نويسنده , , Michael and Chmutov، نويسنده , , Sergei and Rong، نويسنده , , Yongwu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
11
From page :
311
To page :
321
Abstract :
In this paper we prove the knight move theorem for the chromatic graph cohomologies with rational coefficients introduced by L. Helme-Guizon and Y. Rong. Namely, for a connected graph Γ with n vertices the only non-trivial cohomology groups H i , n − i ( Γ ) , H i , n − i − 1 ( Γ ) come in isomorphic pairs: H i , n − i ( Γ ) ≅ H i + 1 , n − i − 2 ( Γ ) for i ⩾ 0 if Γ is non-bipartite, and for i > 0 if Γ is bipartite. As a corollary, the ranks of the cohomology groups are determined by the chromatic polynomial. At the end, we give an explicit formula for the Poincaré polynomial in terms of the chromatic polynomial and a deletion–contraction formula for the Poincaré polynomial.
Journal title :
European Journal of Combinatorics
Serial Year :
2008
Journal title :
European Journal of Combinatorics
Record number :
1546070
Link To Document :
بازگشت