Title of article :
Vertex-coloring 2-edge-weighting of graphs
Author/Authors :
Lu، نويسنده , , Hongliang and Yu، نويسنده , , Qinglin and Zhang، نويسنده , , Cun-Quan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
21
To page :
27
Abstract :
A k -edge-weighting w of a graph G is an assignment of an integer weight, w ( e ) ∈ { 1 , … , k } , to each edge e . An edge weighting naturally induces a vertex coloring c by defining c ( u ) = ∑ u ∼ e w ( e ) for every u ∈ V ( G ) . A k -edge-weighting of a graph G is vertex-coloring if the induced coloring c is proper, i.e., c ( u ) ≠ c ( v ) for any edge u v ∈ E ( G ) . a graph G and a vertex coloring c 0 , does there exist an edge-weighting such that the induced vertex coloring is c 0 ? We investigate this problem by considering edge-weightings defined on an abelian group. proved that every 3-colorable graph admits a vertex-coloring 3-edge-weighting (Karoński et al. (2004) [12]). Does every 2-colorable graph (i.e., bipartite graphs) admit a vertex-coloring 2-edge-weighting? We obtain several simple sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In particular, we show that 3-connected bipartite graphs admit vertex-coloring 2-edge-weighting.
Journal title :
European Journal of Combinatorics
Serial Year :
2011
Journal title :
European Journal of Combinatorics
Record number :
1546230
Link To Document :
بازگشت