Title of article :
Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube
Author/Authors :
Balogh، نويسنده , , Jَzsef and Hu، نويسنده , , Ping and Lidick‎، نويسنده , , Bernard Haochih Liu، نويسنده , , Hong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
11
From page :
75
To page :
85
Abstract :
In this paper we modify slightly Razborov’s flag algebra machinery to be suitable for the hypercube. We use this modified method to show that the maximum number of edges of a 4 -cycle-free subgraph of the n -dimensional hypercube is at most 0.6068 times the number of its edges. We also improve the upper bound on the number of edges for 6 -cycle-free subgraphs of the n -dimensional hypercube from 2 − 1 to 0.3755 times the number of its edges. Additionally, we show that if the n -dimensional hypercube is considered as a poset then the maximum vertex density of three middle layers in an induced subgraph without 4-cycles is at most 2.15121 ( n ⌊ n / 2 ⌋ ) .
Journal title :
European Journal of Combinatorics
Serial Year :
2014
Journal title :
European Journal of Combinatorics
Record number :
1546330
Link To Document :
بازگشت