Title of article :
Spectral Data for Finite Volume Hyperbolic Surfaces at the Bottom of the Continuous Spectrum
Author/Authors :
Petridis، نويسنده , , Y.N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
34
From page :
61
To page :
94
Abstract :
The spectrum of the Laplace operator on finite area non-compact surfaces becomes stable if one adjoins to the L2 eigenvalues the scattering frequencies. For the bottom of the continuous spectrum (14) we need to take into account any non-vanishing Eisenstein series at s = 12. In this work the particular behaviour of the spectrum at 14 is studied with respect to genericity of L2 eigenvalues and of non-vanishing Eisenstein series at s = 12.
Journal title :
Journal of Functional Analysis
Serial Year :
1994
Journal title :
Journal of Functional Analysis
Record number :
1546495
Link To Document :
بازگشت