Title of article :
Robust preconditioning of large, sparse, symmetric eigenvalue problems
Author/Authors :
Stathopoulos، نويسنده , , Andreas and Saad، نويسنده , , Yousef and Fischer، نويسنده , , Charlotte F. Richards، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
19
From page :
197
To page :
215
Abstract :
Iterative methods for solving large, sparse, symmetric eigenvalue problems often encounter convergence difficulties because of ill-conditioning. The generalized Davidson method is a well-known technique which uses eigenvalue preconditioning to surmount these difficulties. Preconditioning the eigenvalue problem entails more subtleties than for linear systems. In addition, the use of an accurate conventional preconditioner (i.e., as used in linear systems) may cause deterioration of convergence or convergence to the wrong eigenvalue. The purpose of this paper is to assess the quality of eigenvalue preconditioning and to propose strategies to improve robustness. Numerical experiments for some ill-conditioned cases confirm the robustness of the approach.
Keywords :
Eigenvalue , Iterative Methods , Generalized Davidson methods , Eigenvector , Symmetric , Preconditioning , Ill-conditioned eigenvectors , Sparse Matrix , Inverse iteration , Spectrum compression
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1995
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1546521
Link To Document :
بازگشت