Title of article :
Independence densities of hypergraphs
Author/Authors :
Bonato، نويسنده , , Anthony and Brown، نويسنده , , Jason I. and Mitsche، نويسنده , , Dieter and Pra?at، نويسنده , , Pawe?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
13
From page :
124
To page :
136
Abstract :
We consider the number of independent sets in hypergraphs, which allows us to define the independence density of countable hypergraphs. Hypergraph independence densities include a broad family of densities over graphs and relational structures, such as F -free densities of graphs for a given graph F . In the case of k -uniform hypergraphs, we prove that the independence density is always rational. In the case of finite but unbounded hyperedges, we show that the independence density can be any real number in [ 0 , 1 ] . Finally, we extend the notion of independence density via independence polynomials.
Journal title :
European Journal of Combinatorics
Serial Year :
2014
Journal title :
European Journal of Combinatorics
Record number :
1546633
Link To Document :
بازگشت