Title of article :
Reduction of m-regular noncrossing partitions
Author/Authors :
Chen، نويسنده , , William Y.C. and Deng، نويسنده , , Eva Y.P. and Du، نويسنده , , Rosena R.X.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
In this paper, we present a reduction algorithm which transforms m-regular partitions of [n]={1,2,…,n} to (m−1)-regular partitions of [n−1]. We show that this algorithm preserves the noncrossing property. This yields a simple explanation of an identity due to Simion–Ullman and Klazar in connection with enumeration problems on noncrossing partitions and RNA secondary structures. For ordinary noncrossing partitions, the reduction algorithm leads to a representation of noncrossing partitions in terms of independent arcs and loops, as well as an identity of Simion and Ullman which expresses the Narayana numbers in terms of the Catalan numbers.
Keywords :
Noncrossing partition , RNA secondary structure , m-regular partition , Davenport–Schinzel sequence , Narayana number , Catalan number , Partition
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics