Title of article :
The Generalized Gradient at a Multiple Eigenvalue
Author/Authors :
Cox، نويسنده , , S.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
11
From page :
30
To page :
40
Abstract :
When a symmetric, positive, isomorphism between a reflexive Banach space (that is densely and compactly embedded in a Hilbert space) and its dual varies smoothly over a Banach space, its eigenvalues vary in a Lipschitz manner. We calculate the generalized gradient of the extreme eigenvalues at an arbitrary crossing. We apply this to the generalized gradient, with respect to a coefficient in an elliptic operator, of(i) the gap between the operator′s first two eigenvalues and (ii) the distance from a prescribed value to the spectrum of the operator.
Journal title :
Journal of Functional Analysis
Serial Year :
1995
Journal title :
Journal of Functional Analysis
Record number :
1547138
Link To Document :
بازگشت