Title of article :
On multi-level bases for elliptic boundary value problems
Author/Authors :
Lai، نويسنده , , Ming-Jun and Wenston، نويسنده , , Paul، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
19
From page :
95
To page :
113
Abstract :
We study the multi-level method for preconditioning a linear system arising from a Galerkin discretization method of an elliptic boundary value problem of order 2r. The solution is approximated in the spline space S10(Δn) when r = 1 and S3r−1r−1(Δn) or S3r−3r−1(n) when r≥2, where Sdϱ denotes a spline space of smoothness ϱ and degree d, Δn is the nth (either uniform or nonuniform) refinement of a given triangulation Δ0, and n is the triangulation obtained from the nth refinement (either uniform or nonuniform) of a given quadrangulation. We show that we can construct a multi-level basis in these spline spaces which preconditions the linear system so that its condition number is O((n + 1)2).
Keywords :
Preconditioning , Multi-level basis , Full approximation order , elliptic equations , B-net , Finite element method , Bivariate splines
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1996
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1547236
Link To Document :
بازگشت