Title of article :
A new upper bound on the acyclic chromatic indices of planar graphs
Author/Authors :
Wang، نويسنده , , Weifan and Shu، نويسنده , , Qiaojun and Wang، نويسنده , , Yiqiao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
17
From page :
338
To page :
354
Abstract :
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a ′ ( G ) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. It was conjectured that a ′ ( G ) ≤ Δ + 2 for any simple graph G with maximum degree Δ . In this paper, we prove that if G is a planar graph, then a ′ ( G ) ≤ Δ + 7 . This improves a result by Basavaraju et al. [M. Basavaraju, L.S. Chandran, N. Cohen, F. Havet, T. Müller, Acyclic edge-coloring of planar graphs, SIAM J. Discrete Math. 25 (2011) 463–478], which says that every planar graph G satisfies a ′ ( G ) ≤ Δ + 12 .
Journal title :
European Journal of Combinatorics
Serial Year :
2013
Journal title :
European Journal of Combinatorics
Record number :
1547282
Link To Document :
بازگشت