Title of article :
Comparison of Moments of Sums of Independent Random Variables and Differential Inequalities
Author/Authors :
Kwapie?، نويسنده , , S. and Lata?a، نويسنده , , R. and Oleszkiewicz، نويسنده , , K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
11
From page :
258
To page :
268
Abstract :
ForS=∑ xiξi, where (ξi) is a sequence of independent, symmetric random variables and (xi) is a sequence of vectors in a normed space we give two methods of proving inequalities (E ∥S∥p)1/p⩽Cp, q(E ∥S∥q)1/qwith the constantsCp, qindependent of the sequence (xi). The methods depend on using differential inequalities of Poincaré or logarithmic Sobolev type. The obtained constants are usually better than the ones obtained by other methods.
Journal title :
Journal of Functional Analysis
Serial Year :
1996
Journal title :
Journal of Functional Analysis
Record number :
1547392
Link To Document :
بازگشت