Title of article :
On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients
Author/Authors :
Mohanty، نويسنده , , R.K. and Jain، نويسنده , , M.K. and George، نويسنده , , Kochurani، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
11
From page :
421
To page :
431
Abstract :
Implicit difference schemes of O(k4 + k2h2 + h4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.
Keywords :
difference method , Linear Stability , hyperbolic equation , polar coordinates , Nonlinear wave equation , Maximum absolute errors
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1996
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1547429
Link To Document :
بازگشت