Title of article :
The Feller Property for Absorption Semigroups
Author/Authors :
El Maati Ouhabaz، نويسنده , , El-Maati and Stollmann، نويسنده , , Peter and Sturm، نويسنده , , Karl-Theodor and Voigt، نويسنده , , Jürgen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
28
From page :
351
To page :
378
Abstract :
LetU=(U(t); t⩾0) be a substochastic strongly continuous semigroup onL1(X, m) whereXis locally compact andma Borel measure onX. We give conditions on absorption ratesVimplying that the (strong) Feller property carries over fromU* toU*V. These conditions are essentially in terms of the Kato class associated withU. Preparing these results we discuss the perturbation theory of strongly continuous semigroups and properties of one-parameter semigroups onL∞(m). In the symmetric case of Dirichlet forms we generalize the results to measure perturbations. For the case of the heat equation on Rdwe show that the results are close to optimal.
Journal title :
Journal of Functional Analysis
Serial Year :
1996
Journal title :
Journal of Functional Analysis
Record number :
1547527
Link To Document :
بازگشت