Title of article :
On the Lovász -number of almost regular graphs with application to Erdős–Rényi graphs
Author/Authors :
de Klerk، نويسنده , , E. and Newman، نويسنده , , M.W. and Pasechnik، نويسنده , , D.V. and Sotirov، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We consider k -regular graphs with loops, and study the Lovász ϑ -numbers and Schrijver ϑ ′ -numbers of the graphs that result when the loop edges are removed. We show that the ϑ -number dominates a recent eigenvalue upper bound on the stability number due to Godsil and Newman [C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets, J. Combin. Theory B 98 (4) (2008) 721–734].
application we compute the ϑ and ϑ ′ numbers of certain instances of Erdős–Rényi graphs. This computation exploits the graph symmetry using the methodology introduced in [E. de Klerk, D.V. Pasechnik and A. Schrijver, Reduction of symmetric semidefinite programs using the regular *-representation, Math. Program. B 109 (2–3) (2007) 613–624].
mputed values are strictly better than the Godsil–Newman eigenvalue bounds.
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics