Title of article :
On the Coefficient Problem: a Version of the Kahane–Katznelson–De Leeuw Theorem for Spaces of Matrices
Author/Authors :
Lust-Piquard، نويسنده , , Françoise، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
25
From page :
352
To page :
376
Abstract :
It is known that, for every (an)∈l2(Z) there exists a functionF∈C(T) such that |an|⩽|F(n)| for everyn∈Z. We prove a noncommutative version: for every matrixA=(aij) such that supi Verbar;(aij)j‖l2and supj ‖(aij)i‖l2are finite, there exists a matrix (bij) defining a bounded operator onl2, such that |aij|⩽|bij| for everyi, j. We extend this to other norms on matrices and present an abstract version of the coefficient problem.
Journal title :
Journal of Functional Analysis
Serial Year :
1997
Journal title :
Journal of Functional Analysis
Record number :
1548324
Link To Document :
بازگشت