Title of article :
Proof of Moll’s minimum conjecture
Author/Authors :
Chen، نويسنده , , William Y.C. and Xia، نويسنده , , Ernest X.W. Xia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
5
From page :
787
To page :
791
Abstract :
Let d i ( m ) denote the coefficients of the Boros–Moll polynomials. Moll’s minimum conjecture states that the sequence { i ( i + 1 ) ( d i 2 ( m ) − d i − 1 ( m ) d i + 1 ( m ) ) } 1 ≤ i ≤ m attains its minimum at i = m with 2 − 2 m m ( m + 1 ) 2 m m 2 . This conjecture is stronger than the log-concavity conjecture of Moll proved by Kauers and Paule. We give a proof of Moll’s conjecture by utilizing the spiral property of the sequence { d i ( m ) } 0 ≤ i ≤ m , and the log-concavity of the sequence { i ! d i ( m ) } 0 ≤ i ≤ m .
Journal title :
European Journal of Combinatorics
Serial Year :
2013
Journal title :
European Journal of Combinatorics
Record number :
1548488
Link To Document :
بازگشت