Title of article :
Quadrature on the half line and two-point Padé approximants to Stieltjes functions. Part III. The unbounded case
Author/Authors :
Bultheel، نويسنده , , A. and Dيaz-Mendoza، نويسنده , , C. and Gonzلlez-Vera، نويسنده , , P. and Orive، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
23
From page :
95
To page :
117
Abstract :
Let α be a general, absolutely continuous measure, possibly complex, supported on [0,∞). Let Fα(z) denote its Cauchy transform. In this paper we prove, under suitable conditions, the convergence of two-point Padé type approximants to Fα and of the associated quadrature formulas ∑j=1nAjƒ(xj) to the intergral ∫0∞ f(x)dα(x). These quadrature formulas can be of Gaussian or of interpolatory type. Estimates for the rate of convergence are also included.
Keywords :
Orthogonal Laurent polynomials , Two-point Padé approximation , Stieltjes function , quadrature formula
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1997
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1548617
Link To Document :
بازگشت