Title of article :
A Functional Calculus on the Heisenberg Group and the Boundary Layer Potential □−1+for the ∂-Neumann Problem
Author/Authors :
Beals، نويسنده , , Richard and Greiner، نويسنده , , Peter C. and Jiang، نويسنده , , Yaping and Seco، نويسنده , , Luis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
24
From page :
205
To page :
228
Abstract :
There are two natural commuting self-adjoint operators in the enveloping algebra of the Heisenberg group: the Heisenberg sublaplacianΔHand the central elementT=−i∂/∂t. The joint spectral theory of these operators is investigated by means of the Laguerre calculus. Explicit convolution kernels are obtained for a large class of functionsΦ(−ΔH, T). In particular we find the kernels of the operators□+, α=−ΔH−αT+T2−Tthat occur in the Kohn solution of the ∂-Neumann problem for the associated Siegel domain.
Journal title :
Journal of Functional Analysis
Serial Year :
1998
Journal title :
Journal of Functional Analysis
Record number :
1548705
Link To Document :
بازگشت