Title of article :
Extension of colorings
Author/Authors :
Izmestiev، نويسنده , , Ivan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Let K be a combinatorial (d−1)-sphere with vertices colored in n colors, n≥d+1. We prove that K bounds an n-colored combinatorial ball. This theorem generalizes previously known facts for d=2 and 3. A further generalization is obtained. Namely, let L be a simplicial complex of dimension d and K be a subcomplex of L. Then any vertex coloring of K in n≥d+1 colors extends to some subdivision of L relative to K. Besides, in both cases the extension can be required to use only d+1 of n colors in the complement to K.
Keywords :
Coloring , Simplicial complex
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics