Title of article :
Boundary Layers on Sobolev–Besov Spaces and Poissonʹs Equation for the Laplacian in Lipschitz Domains
Author/Authors :
Fabes، نويسنده , , Eugene and Mendez، نويسنده , , Osvaldo and Mitrea، نويسنده , , Marius، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
46
From page :
323
To page :
368
Abstract :
We study inhomogeneous boundary value problems for the Laplacian in arbitrary Lipschitz domains with data in Sobolev–Besov spaces. As such, this is a natural continuation of work in [Jerison and Kenig,J. Funct. Anal.(1995), 16–219] where the inhomogeneous Dirichlet problem is treated via harmonic measure techniques. The novelty of our approach resides in the systematic use of boundary integral methods. In this regard, the key results are establishing the invertibility of the classical layer potential operators on scales of Sobolev–Besov spaces on Lipschitz boundaries for optimal ranges of indices. Applications toLp-based Helmholtz type decompositions of vector fields in Lipschitz domains are also presented.
Keywords :
Layer potentials , Sobolev–Besov spaces , Poissonיs problem , Lipschitz domains , Helmholtz decompositions
Journal title :
Journal of Functional Analysis
Serial Year :
1998
Journal title :
Journal of Functional Analysis
Record number :
1548982
Link To Document :
بازگشت