Title of article :
Spectral Analysis on Infinite Sierpiński Gaskets
Author/Authors :
Teplyaev، نويسنده , , Alexander، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
31
From page :
537
To page :
567
Abstract :
We study the spectral properties of the Laplacian on infinite Sierpiński gaskets. We prove that the Laplacian with the Neumann boundary condition has pure point spectrum. Moreover, the set of eigenfunctions with compact support is complete. The same is true if the infinite Sierpiński gasket has no boundary, but is false for the Laplacian with the Dirichlet boundary condition. In all these cases we describe the spectrum of the Laplacian and all the eigenfunctions with compact support. To obtain these results, first we prove certain new formulas for eigenprojectors of the Laplacian on finite Sierpiński pre-gaskets. Then we prove that the spectrum of the discrete Laplacian on a Sierpiński lattice is pure point, and the eigenfunctions are localized.
Keywords :
Laplacian , Fractals , Pure point spectrum , localization , fractal graphs
Journal title :
Journal of Functional Analysis
Serial Year :
1998
Journal title :
Journal of Functional Analysis
Record number :
1549002
Link To Document :
بازگشت