Title of article :
On subsets of containing no -term progressions
Author/Authors :
Lin، نويسنده , , Y. and Wolf، نويسنده , , J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
1398
To page :
1403
Abstract :
In this paper we prove that for any fixed integer k and any prime power q ≥ k , there exists a subset of F q 2 k of size q 2 ( k − 1 ) + q k − 1 − 1 which contains no k points on a line, and hence no k -term arithmetic progressions. As a corollary we obtain an asymptotic lower bound as n → ∞ for r k ( F q n ) when q ≥ k , which can be interpreted as the finite field analogue of Behrend’s construction for longer progressions.
Journal title :
European Journal of Combinatorics
Serial Year :
2010
Journal title :
European Journal of Combinatorics
Record number :
1549074
Link To Document :
بازگشت