Title of article :
Invariant Subspaces for Semigroups of Algebraic Operators
Author/Authors :
Cigler، نويسنده , , Grega and Drnov?ek، نويسنده , , Roman and Kokol-Bukov?ek، نويسنده , , Damjana and Omladi?، نويسنده , , Matja? and Laffey، نويسنده , , Thomas J. and Radjavi، نويسنده , , Heydar and Rosenthal، نويسنده , , Peter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
14
From page :
452
To page :
465
Abstract :
T. Laffey showed (Linear and Multilinear Algebra6(1978), 269–305) that a semigroup of matrices is triangularizable if the ranks of all the commutators of elements of the semigroup are at most 1. Our main theorem is an extension of Hthis result to semigroups of algebraic operators on a Banach space. We also obtain a related theorem for a pair {A, B} of arbitrary bounded operators satisfying rank (AB−BA)=1 and several related conditions. In addition, it is shown that a semigroup of algebraically unipotent operators of bounded degree is triangularizable.
Journal title :
Journal of Functional Analysis
Serial Year :
1998
Journal title :
Journal of Functional Analysis
Record number :
1549100
Link To Document :
بازگشت