Title of article :
Existence of Nonexpansive Retractions for Amenable Semigroups of Nonexpansive Mappings and Nonlinear Ergodic Theorems in Banach Spaces
Author/Authors :
Lau، نويسنده , , Anthony To-Ming and Shioji، نويسنده , , Naoki and Takahashi، نويسنده , , Wataru، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
In this paper, we study nonlinear ergodic properties for an amenable semigroup of nonexpansive mappings in a Banach space. We prove that ifSis an amenable semigroup and S={Tt: t∈S} is a nonexpansive semigroup on a closed, convex subsetCin a uniformly convex Banach spaceEsuch that the setF(S) of common fixed points of S is nonempty, then there exists a nonexpansive retractionPfromContoF(S) such thatPTt=TtP=Pfor eacht∈SandPx∈co{Ttx: t∈S} for eachx∈C. In this case, there exists a net {Aα} of finite averages of S such that for eacht∈Sand for each bounded subsetBofC, limα ‖AαTtx−Aαx‖=0 and limα ‖TtAαx−Aαx‖ =0 uniformly forx∈B. Also, if the norm ofEis Fréchet differentiable, then for eachx∈C,Pxis the unique common fixed point in ∩s∈S co{Ttsx: t∈S}. Furthermore, if {μα} is an asymptotically invariant net of means, then for eachx∈C, {Tμαx} converges weakly toPx.
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis