Title of article :
Lebesgue Sobolev orthogonality on the unit circle
Author/Authors :
Berriochoa، نويسنده , , E. and Cachafeiro، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
8
From page :
27
To page :
34
Abstract :
This paper is devoted to the study of asymptotic properties of the orthogonal polynomials with respect to a Sobolev inner product 〈f(z),g(z)〉s = ∫02π f(eiθ))g(eiθ)dμ(θ)+∑k=1pλk∫02πfk(eiθ)g(eiθ)dθ2π, z=eiθ, with dμ(θ) a finite positive Borel measure on [0, 2π] with an infinite set as support verifying the Szegő condition, λ1 > 0, λk ⩾ 0 (k = 2,…, p) and dθ2π the normalized Lebesgue measure on [0, 2π]. m is to extend some previous results that we have obtained in [2, 3] when the measure μ belongs to the Bernstein-Szegő class and p = 1.
Keywords :
Measures on the unit circle , orthogonal polynomials , Szeg? condition , Sobolev inner products
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1998
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1549210
Link To Document :
بازگشت