Title of article :
Intersecting families of permutations
Author/Authors :
Cameron، نويسنده , , Peter J. and Ku، نويسنده , , C.Y.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
10
From page :
881
To page :
890
Abstract :
Let Sn be the symmetric group on the set X={1,2,…,n}. A subset S of Sn is intersecting if for any two permutations g and h in S, g(x)=h(x) for some x∈X (that is g and h agree on x). Deza and Frankl (J. Combin. Theory Ser. A 22 (1977) 352) proved that if S⊆Sn is intersecting then |S|≤(n−1)!. This bound is met by taking S to be a coset of a stabiliser of a point. We show that these are the only largest intersecting sets of permutations.
Journal title :
European Journal of Combinatorics
Serial Year :
2003
Journal title :
European Journal of Combinatorics
Record number :
1550011
Link To Document :
بازگشت