Title of article :
Potential Theory on Lipschitz Domains in Riemannian Manifolds: Sobolev–Besov Space Results and the Poisson Problem
Author/Authors :
Mitrea، نويسنده , , Marius and Taylor، نويسنده , , Michael، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
79
From page :
1
To page :
79
Abstract :
We continue a program to develop layer potential techniques for PDE on Lipschitz domains in Riemannian manifolds. Building on Lp and Hardy space estimates established in previous papers, here we establish Sobolev and Besov space estimates on solutions to the Dirichlet and Neumann problems for the Laplace operator plus a potential, on a Lipschitz domain in a Riemannian manifold with a metric tensor smooth of class C1+γ, for some γ>0. We treat the inhomogeneous problem and extend it to the setting of manifolds results obtained for the constant-coefficient Laplace operator on a Lipschitz domain in Euclidean space, with the Dirichlet boundary condition, by D. Jerison and C. Kenig.
Journal title :
Journal of Functional Analysis
Serial Year :
2000
Journal title :
Journal of Functional Analysis
Record number :
1550015
Link To Document :
بازگشت