Title of article :
Asymptotic Stability of Large Solutions with Large Perturbation to the Navier–Stokes Equations
Author/Authors :
Kozono، نويسنده , , Hideo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
45
From page :
153
To page :
197
Abstract :
Consider weak solutions w of the Navier–Stokes equations in Serrinʹs class w∈Lα(0, ∞; Lq(Ω)) for 2/α+3/q=1 with 3<q⩽∞, where Ω is a general unbounded domain in R3. We shall show that although the initial and external disturbances from w are large, every perturbed flow v with the energy inequality converges asymptotically to w as ‖v(t)−w(t)‖L2(Ω)→0, ‖∇v(t)−∇w(t)‖L2(Ω)=O(t−1/2) as t→∞.
Keywords :
Serrinיs class , Lp?Lr-estimates , energy inequality , asymptotic stability
Journal title :
Journal of Functional Analysis
Serial Year :
2000
Journal title :
Journal of Functional Analysis
Record number :
1550026
Link To Document :
بازگشت